Équations différentielles

Proposé par: ELJAOUI EL HASSAN

Dans tout ce chapitre I désigne un intervalle de \mathbb{R} contenant au moins deux points. a,b,c et d sont des fonctions continues sur I à valeurs dans \mathbb{K} , avec a non identiquement nulle et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Équations différentielles linéaires : Généralités.

1.1 Équations différentielles linéaires du premier ordre :

Définition 1:

(i) On appelle équation différentielle linéaire du premier ordre toute équation différentielle du type :

$$a(t)y'(t) + b(t)y(t) = c(t) \quad (E).$$

(ii) On appelle équation homogène (ou sans second membre) associée à (E) l'équation :

$$a(t)y'(t) + b(t)y(t) = 0$$
 (E₀).

(iii) On appelle solution de (E) sur I toute fonction f dérivable sur I vérifiant, pour tout $t \in I$:

$$a(t)f'(t) + b(t)f(t) = c(t) \quad (E).$$

(iv) On note S l'ensemble des solutions de (E) et S_0 l'ensemble des solutions de (E_0) . **Proposition :**

- (i) L'ensemble S_0 est non vide, car il contient la fonction nulle, et il est stable par combinaison linéaire. On dit que S_0 est un sous-espace vectoriel de $\mathcal{F}(I, \mathbf{C})$.
- (ii) Si ${\mathcal S}$ est non vide et si y_p est une solution particulière de (E), alors :

$$S = \{y = y_p + y_0/y_0 \in S_0\}.$$

On dit que S est un sous-espace affine de $\mathcal{F}(I, \mathbf{C})$ passant par y_p et de direction S_0 . **Méthode**:

Pour résoudre (E):

- On cherche la solution générale y_0 de S_0 .
- On cherche une solution particulière y_p de S.
- On conclut que la solution générale y de S est de la forme $y = y_p + y_0$.

1.2 Équations différentielles linéaires du second ordre :

Définition 1:

(i) On appelle équation différentielle linéaire du second ordre toute équation différentielle du type :

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = d(t)$$
 (E).

(ii) On appelle équation homogène (ou sans second membre) associée à (E) l'équation :

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
 (E₀).

(iii) On appelle solution de (E) sur I toute fonction f deux fois dérivable sur I vérifiant, pour tout $t \in I$:

$$a(t)f''(t) + b(t)f'(t) + c(t)f(t) = d(t)$$
 (E).

(iv) On note S l'ensemble des solutions de (E) et S_0 l'ensemble des solutions de (E_0) .

Proposition:

- (i) L'ensemble S_0 est non vide, car il contient la fonction nulle, et il est stable par combinaison linéaire. On dit que S_0 est un sous-espace vectoriel de $\mathcal{F}(I, \mathbf{C})$.
- (ii) Si S est non vide et si y_p est une solution particulière de (E), alors :

$$S = \{y = y_p + y_0/y_0 \in S_0\}.$$

On dit que S est un sous-espace affine de $F(I, \mathbf{C})$ passant par y_p et de direction S_0 .

Méthode:

Pour résoudre (E):

- On cherche la solution générale y_0 de \mathcal{S}_0 .
- On cherche une solution particulière y_p de S.
- On conclut que la solution générale y de S est de la forme $y = y_p + y_0$.

Proposition: Principe de superposition.

Soient α, β deux complexes, d_1 et d_2 et deux fonctions continues sur I.

Si y_1 est une solution de : $a(t)y''(t) + b(t)y'(t) + c(t)y(t) = d_1(t)$ et si Si y_2 est une solution de : $a(t)y''(t) + b(t)y'(t) + c(t)y(t) = d_2(t)$ sur I, alors $\alpha y_1 + \beta y_2$ est une solution de l'équation $a(t)y''(t) + b(t)y'(t) + c(t)y(t) = \alpha d_1(t) + \beta d_2(t) \text{ sur } I.$

2 Équations différentielles du premier ordre : Résolution.

Résolution de (E_0) : 2.1

On considère l'équation sans second membre : a(t)y'(t) + b(t)y(t) = 0 (E₀).

Proposition:

Supposons que la fonction a ne s'annule pas sur I et soit A une primitive sur I de la fonction $t \mapsto \frac{-b(t)}{a(t)}$, alors la solution générale de (E_0) sur I est de la forme $y_0: t \mapsto \lambda \exp(A(t))$ avec $\lambda \in \mathbb{K}$.

Ainsi:
$$S_0 = \{y_0 : t \mapsto \lambda \exp(A(t)) / \lambda \in \mathbb{K}\}.$$

Exemples:

(i) 2ty'(t) - y(t) = 0 (E_0) .

Sur $\mathbb{R}_{-}^{*}: y_0: t \mapsto \lambda \sqrt{-t} \text{ avec } \lambda \in \mathbb{R}.$

Sur $\mathbb{R}_+^* : y_0 : t \mapsto \mu \sqrt{t} \text{ avec } \mu \in \mathbb{R}.$

(ii) (t-1)y'(t) + ty(t) = 0 (E_0) . Sur $]1, +\infty[: y_0: t \mapsto \frac{\lambda e^{-t}}{t-1}]$ avec $\lambda \in \mathbb{R}$.

Sur] $-\infty$, 1[: $y_0: t \mapsto \frac{\mu e^{-t}}{t-1}$ avec $\mu \in \mathbb{R}$. (iii) $y'(t) \sin t - y(t) \cos t = 0$ (E_0).

Sur $]0, \pi[: y_0: t \mapsto \lambda \sin t \text{ avec } \lambda \in \mathbb{R}.$

2.2Résolution de (E):

On considère l'équation : a(t)y'(t) + b(t)y(t) = c(t) (E).

Méthode de la variation de la constante :

On cherche une solution particulière y_p de (E) sous la forme $y_p = zy_0$ où y_0 est la solution de (E_0) obtenue en prenant $\lambda = 1$ et z une fonction dérivable sur I à déterminer.

Or: $a(t)y_p'(t) + b(t)y_p(t) = c(t)$; c.à.d: $a(t)z'(t)y_0(t) + (a(t)y_0'(t) + b(t)y_0(t))z(t) = c(t)$.

D'où : $z'(t) = \frac{c(t)}{a(t)y_0(t)}$, pour tout $t \in I$. Donc : $z(t) = \int \frac{c(t)}{a(t)y_0(t)} dt$, pour tout $t \in I$.

Exemples:

(i) $ty'(t) - y(t) = t^2 e^t$ (E).

Sur $\mathbb{R}_+^* : y_0 : t \mapsto \lambda t$ avec $\lambda \in \mathbb{R}$, est la solution générale de (E_0) .

Cherchons une solution particulière y_p de (E) telle que $y_p: t \mapsto tz(t)$.

Donc: $t^2z'(t) + tz(t) - tz(t) = t^2e^t$ c.à.d: $z'(t) = e^t$ Donc on prend: $z(t) = e^t$.

C.à.d: $y_p: t \mapsto te^t$, ainsi la solution générale de (E) sur \mathbb{R}_+^* est $y = y_0 + y_p$.

C.à.d: $y: t \mapsto \lambda t + t e^t$, avec $\lambda \in \mathbb{R}$.

(ii) $y'(t) \sin t - y(t) \cos t = 1$ (E).

Sur $[0, \pi[: y_0 : t \mapsto \lambda \sin t \text{ avec } \lambda \in \mathbb{R}, \text{ est la solution générale de } (E_0).$

De même on trouve que : $y_p: t \mapsto -\cos t$ est une solution particulière de (E) sur $]0, \pi[$.

Donc : la solution générale de (E) sur $]0,\pi[$ est $y=y_0+y_p.$

C.à.d : $y: t \mapsto \lambda \sin t - \cos t$, avec $\lambda \in \mathbb{R}$.

2.3Problème de Cauchy:

Proposition:

Supposons que la fonction a ne s'annule pas sur I, et soient $t_0 \in I$ et $\alpha \in \mathbb{K}$, alors l'équation (E)

admet une unique solution y sur I vérifiant la condition initiale $y(t_0) = \alpha$.

On dit aussi que le problème de Cauchy : $\begin{cases} a(t)y'(t) + b(t)y(t) = c(t) \\ y(t_0) = \alpha \end{cases}$ admet une unique solution $y \operatorname{sur} I$.

Exemples:

(i) Le problème de Cauchy : $\begin{cases} y'(t)\sin t - y(t)\cos t = 1\\ y(\frac{\pi}{2}) = 1 \end{cases}$ admet comme unique solution sur $]0,\pi[:y:t\mapsto \sin t - \cos t.$ (ii) Le problème de Cauchy : $\begin{cases} t\ln ty'(t) + y(t) = t\\ y(e) = e \end{cases}$ admet comme unique solution sur

 $]1,+\infty[:y:t\mapsto \frac{t}{\ln t}]$

2.4Raccordement des solutions:

Remarque:

Dans tout ce qui précède, on a supposé que la fonction a ne s'annule pas sur I. Que se passe-t-il si cette condition n'est pas remplie? Traitons ce cas à travers des exemples :

Exemples:

(i) On considère l'équation $ty'(t) - 3y(t) = t^4$ (E).

- Sur]0, +∞[la solution générale de (E) est $y: t \mapsto \lambda t^3 + t^4$ avec $\lambda \in \mathbb{R}$.

Sur]- ∞ , 0[la solution générale de (E) est $y:t\mapsto \mu t^3+t^4$ avec $\mu\in\mathbb{R}$.

Soit y une solution de (E) sur \mathbb{R} , alors: $\begin{cases} y(t)=\lambda t^3+t^4 & sit>0\\ y(t)=\mu t^3+t^4 & sit<0 \end{cases}$ Comme y est continue en 0, alors:

Comme y est continue en 0, alors :

 $y(0) = \lim_{t \to 0^+} y(t) = \lim_{t \to 0^-} y(t) = 0$ (conditions de raccordement) .

- Réciproquement, on vérifie facilement que la fonction $\begin{cases} y(t) = \lambda t^3 + t^4 & si \ t \ge 0 \\ y(t) = \mu t^3 + t^4 & si \ t < 0 \end{cases}$ est une solution de (E) sur \mathbb{R} .

Ainsi la solution générale de (E) sur $\mathbb R$ dépend de deux paramètres et non pas d'un seul comme dans les cas du paragraphe précédent.

- Notons que dans ce cas le problème de Cauchy $\begin{cases} ty'(t) - 3y(t) = t^4 & (E) \\ y(0) = 0 \end{cases}$ infinité de solutions sur \mathbb{R} , car la fonction $a: t \mapsto t$ s'annule en 0.

(ii) On considère l'équation $(1-t)y'(t) - y(t) = t^2$ (E).

– Sur]1, $+\infty$ [la solution générale de (E) est $y:t\mapsto \frac{t^3+3\lambda}{3(1-t)}$ avec $\lambda\in\mathbb{R}$.

- Sur] - ∞ , 1[la solution générale de (E) est $y: t \mapsto \frac{t^3 + 3\mu}{3(1-t)}$ avec $\mu \in \mathbb{R}$.

- Soit y une solution de (E) sur \mathbb{R} , alors : $\begin{cases} y(t) = \frac{t^3 + 3\lambda}{3(1-t)} & si \ t > 1 \\ y(t) = \frac{t^3 + 3\mu}{3(1-t)} & si \ t < 1 \end{cases}$

Comme y est continue en 1, alors : $y(1) = \lim_{t \to 1^+} \frac{t^3 + 3\lambda}{3(1-t)} = \lim_{t \to 1^-} \frac{t^3 + 3\mu}{3(1-t)} = 0 \text{ (conditions de raccordement)}.$ Ces deux limites existent si, et seulement si $\lambda = \mu = \frac{-1}{3}$ et dans ce cas, on trouve y(1) = -1.

Ainsi: $y: t \mapsto y(t) = \frac{-(t^2 + t + 1)}{3}$

- Réciproquement, on vérifie facilement que la fonction $y: t \mapsto \frac{-(t^2+t+1)}{3}$ est une solution $de(E) sur \mathbb{R}$.

Ainsi la solution générale de (E) sur \mathbb{R} ne dépend d'aucun paramètre, elle est unique.

- Notons que dans ce cas le problème de Cauchy $\begin{cases} (1-t)y'(t) - y(t) = t^2 & (E) \\ y(0) = 0 \end{cases}$ n'admet aucune solution sur \mathbb{R} , car la fonction $a: t \mapsto 1-t$ s'annule en 1.

3 Équations du second ordre à coefficients constants :

Soient a, b et c trois complexes, avec $a \neq 0$, on considère l'équation d'ordre deux :

$$ay''(t) + by'(t) + cy(t) = 0$$
 (E_0) .

3.1 Résolution de (E_0) sur \mathbb{R} :

Remarque:

Soit r un complexe, la fonction $f: t \mapsto e^{rt}$ est dérivable sur \mathbb{R} , et pour $t \in \mathbb{R}$, on a :

$$f'(t) = re^{rt} \quad et \quad f"(t) = r^2 e^{rt}.$$

f est une solution de $(E_0) \Leftrightarrow \forall t \in \mathbb{R} : e^{rt}(ar^2 + br + c) = 0 \Leftrightarrow \forall t \in \mathbb{R} : ar^2 + br + c = 0$. car la fonction exponentielle complexe ne s'annule pas sur \mathbb{C} .

Définition:

L'équation $ar^2 + br + c = 0$ (C) s'appelle l'équation caractéristique de (E_0) , son discriminant est $\Delta = b^2 - 4ac$.

Proposition: Cas complexe.

Si a, b, c sont complexes, avec a non nul, on distingue deux cas :

(i) Si $\Delta \neq 0$, alors (\mathcal{C}) admet deux racines complexes distinctes r_1 et r_2 , donc la solution générale de (E_0) est de la forme :

$$y_0: t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t}$$

avec $(\lambda, \mu) \in \mathbb{C}^2$.

(ii) Si $\Delta = 0$, alors (\mathcal{C}) admet une racine complexe double r_0 , donc la solution générale de (E_0) est de la forme :

$$y_0: t \mapsto (\lambda t + \mu)e^{r_0t}$$

avec $(\lambda, \mu) \in \mathbb{C}^2$.

Proposition: Cas réel.

Si a, b, c sont réels, avec a non nul, on distingue trois cas :

(i) Si $\Delta > 0$, alors (\mathcal{C}) admet deux racines réelles distinctes r_1 et r_2 , donc la solution générale de (E_0) est de la forme :

$$y_0: t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t}$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

(ii) Si $\Delta = 0$, alors (\mathcal{C}) admet une racine réelle double r_0 , donc la solution générale de (E_0) est de la forme :

$$y_0: t \mapsto (\lambda t + \mu)e^{r_0t}$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

(iii) Si $\Delta < 0$, alors (\mathcal{C}) admet deux racines complexes distinctes $\alpha + i\beta$ et $\alpha - i\beta$, où α, β sont réels avec $\beta > 0$, donc la solution générale de (E_0) est de la forme :

$$y_0: t \mapsto e^{\alpha t} (\lambda \cos(\beta t) + \mu \sin(\beta t))$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

Exemples:

(i) Soit y''(t) - 7y'(t) + 12y(t) = 0 (E_0). La solution générale de (E_0) est de la forme :

$$y_0: t \mapsto \lambda e^{3t} + \mu e^{4t} \quad avec \quad (\lambda, \mu) \in \mathbb{R}^2.$$

(ii) Soit y''(t) - 6y'(t) + 9y(t) = 0 (E_0). La solution générale de (E_0) est de la forme :

$$y_0: t \mapsto (\lambda t + \mu)e^{3t} \quad avec \quad (\lambda, \mu) \in \mathbb{R}^2.$$

(iii) Soit y''(t) - 4y'(t) + 29y(t) = 0 (E_0). La solution générale de (E_0) est de la forme :

$$y_0: t \mapsto e^{2t}(\lambda \cos(5t) + \mu \sin(5t)) \quad avec \quad (\lambda, \mu) \in \mathbb{R}^2.$$

Exercice:

Résoudre l'équation $y''(t) + \omega y(t) = 0$, où ω est un réel donné.

3.2 Résolution de (E):

Soient a, b, c et m quatre complexes, avec $a \neq 0$, et P une fonction polynômiale non nulle à coefficients complexes, on considère l'équation d'ordre deux :

$$ay''(t) + by'(t) + cy(t) = e^{mt}P(t)$$
 (E).

Proposition : Solution particulière de (E).

(E) admet une solution particulière y_p de la forme $y_p: t \mapsto e^{mt}Q(t)$, où P une fonction polynômiale non nulle à coefficients complexes vérifiant :

(i) Si m n'est pas une racine de (C):

$$deg(Q) = deg(P).$$

(ii) Si m est une racine simple de (C):

$$deg(Q) = deg(P) + 1.$$

(iii) Si m est une racine double de (C):

$$deg(Q) = deg(P) + 2.$$

Exemples:

(i) Soit $y''(t) + y(t) = te^t$ (E). La solution générale de (E) est de la forme :

$$y: t \mapsto \lambda \cos t + \mu \sin t + \left(\frac{t-1}{2}\right) e^t \quad avec \quad (\lambda, \mu) \in \mathbb{R}^2.$$

(ii) Soit $y''(t) + 2y'(t) + y(t) = e^{-t}$ (E). La solution générale de (E_0) est de la forme :

$$y_0: t \mapsto (\frac{t^2}{2} + \lambda t + \mu)e^{-t} \quad avec \quad (\lambda, \mu) \in \mathbb{R}^2.$$

(iii) Soit y''(t) - 4y'(t) + 3y(t) = (2t+1)sh(t) (E). La solution générale de (E) est de la forme :

$$y:t\mapsto \left(\frac{-t^2-2t}{4}+\mu\right)e^t-\left(\frac{4t+5}{32}\right)e^{-t}+\lambda e^{3t}\quad avec\quad (\lambda,\mu)\in\mathbb{R}^2.$$

3.3 Problème de Cauchy:

Proposition:

Soient $t_0 \in \mathbb{R}$ et $(\alpha, \beta) \in \mathbb{K}^2$, alors l'équation ay''(t) + by'(t) + cy(t) = d(t) (E), avec $a \neq 0$, admet une unique solution y sur \mathbb{R} vérifiant les deux conditions initiales $y(t_0) = \alpha$ et $y'(t_0) = \beta$.

On dit aussi que le problème de Cauchy : $\begin{cases} ay''(t) + by'(t) + cy(t) = d(t) \\ y(t_0) = \alpha; \quad y'(t_0) = \beta \end{cases}$ admet une unique solution y sur \mathbb{R} .

Exemple:

Le problème de Cauchy : $\begin{cases} y"(t) + y(t) = te^t \\ y(0) = 0; \quad y'(0) = 0 \end{cases}$ admet comme unique solution sur \mathbb{R} la fonction $y: t \mapsto \frac{1}{2} \cos t + \left(\frac{t-1}{2}\right) e^t$.

4 Équations différentielles à variables séparables :

4.1 Définition :

On appelle équation différentielle à variables séparables toute équation du type :

$$y'(t)f(y(t)) = g(t)$$
 (E_s)

5

où f et g sont deux fonctions continues sur I.

4.2 Résolution de (E_s) :

En intégrant (E_s) , on obtient : $\int f(y)dy = \int g(t)dt + C$. Ce qui donne y en fonction de t dans certains cas.

4.3Exemples:

(i) Soit $y' = (1 + t^2)(1 + y^2)$. Donc: $\frac{y'}{1+y^2} = 1 + t^2$

Donc:
$$\frac{y'}{1+y^2} = 1 + t^2$$

En intégrant, on obtient : $\arctan(y) = t + \frac{t^3}{3} + C$.

C.à.d : $y=\tan(t+\frac{t^3}{3}+C)$ sur un intervalle I tel que pour tout $t\in I$: $t+\frac{t^3}{3}+C\in]\frac{-\pi}{2},\frac{\pi}{2}[$. (ii) Soit $y'=e^{2x-y}$.

(ii) Soit
$$y' = e^{2x-y}$$
.

$$Donc: y'e^y = e^{2x}$$

en intégrant, on obtient :
$$e^y = \frac{1}{2}e^{2x} + C$$

en intégrant, on obtient : $e^y=\frac{1}{2}e^{2x}+C$. C.à.d : $y=\ln(\frac{1}{2}e^{2x}+C)$ sur un intervalle I tel que pour tout $t\in I$: $\frac{1}{2}e^{2x}+C>0$. (iii) Soit $y'=x^3y$. Donc : $\frac{y'}{y}=x^3$

Donc:
$$\frac{y'}{y} = x^3$$

en intégrant, on obtient :
$$\ln(y) = \frac{x^4}{4} + C$$
.

C.à.d: $y = \exp(\frac{x^4}{4} + C)$ sur un intervalle I tel que y ne s'annule pas sur I.

Exercice: 4.4

Intégrer chacune des équations différentielles à variables séparables suivantes :

1.
$$x + yy' = 0$$
.

2.
$$y' - -xy^3 = x + 1$$
.

3.
$$y'(\ln(y) + 1) = \ln(x) + 1$$
.